
 
 

Issue 1 © NESSI 2023 1 

Software Security 

This NESSI1 paper reviews today’s challenges of securing software throughout the entire software 

development lifecycle and recommends research directions to address those issues. NESSI puts particular 

focus on those software security approaches and techniques that will play a role in the implementation of 

upcoming regulations such as the European Cyber Resilience Act2. 

Motivation 

Cyber attacks increasingly exploit vulnerabilities in software supply chains. Compromised software spreads 

along the distribution channels of the supply chains and leads to large-scale incidents with devastating effects 

for those who deploy and use the software. Such attacks raise serious concerns about the security of software 

products and digital services, leading regulatory authorities to launch initiatives with the aim of improving 

the security of software and software supply chains. In Europe the Cyber Resilience Act (CRA)2 and in the US 

the Executive Order on Improving the Nation’s Cybersecurity3 have been initiated to address these issues. 

Software vulnerabilities are not a new 

phenomenon. In 1988 some of the first cyber 

attacks took advantage of a buffer overflow 

vulnerability4. Today the number of software 

vulnerabilities is still growing as shown in Figure 1 

– and it is surprising that overflow vulnerabilities 

are still among the most frequent ones5.  What 

has changed over time is the complexity of 

software and the software lifecycle. Now rarely 

built from scratch, software depends increasingly 

on components supplied by open source projects 

or third parties. Those components may rely on 

other components, resulting in a network of 

components with many transient dependencies. Components such as source code, binaries, plugins, 

configuration files, container manifest files etc., and tools such as compilers, repositories, and code analysers, 

as well as people and processes involved in the software lifecycle, are all part of a software supply chain. 

Such a complex and interrelated system of technologies, people and processes provides a large attack surface 

to bad actors. This attack surface extends across all phases of the software lifecycle, as pointed out by the 

IEEE SWEBOK: “To design security into software, one must take into consideration every stage of the software 

development lifecycle. In particular, secure software development involves software requirements security, 

software design security, software construction security, and software testing security. In addition, security 

must also be taken into consideration when performing software maintenance as security faults and 

loopholes can be and often are introduced during maintenance”6.  

 
1 NESSI (Networked European Software and Services Initiative), the European association promoting research, 
development and innovation in the field of software, data and digital services; http://www.nessi.eu/  
2 Cyber Resilience Act | Shaping Europe’s digital future (europa.eu) 
3 FACT SHEET: President Signs Executive Order Charting New Course to Improve the Nation’s Cybersecurity and Protect 
Federal Government Networks - The White House 
4 https://en.wikipedia.org/wiki/Morris_worm  
5 https://www.cvedetails.com/vulnerabilities-by-types.php  
6 SWEBOK V3.0, Guide to the software Engineering Body of Knowledge, IEEE; chapter 13 section 17 

Figure 1 Number of software vulnerabilities 
(https://www.cvedetails.com/vulnerabilities-by-types.php ) 

http://www.nessi.eu/
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://www.whitehouse.gov/briefing-room/statements-releases/2021/05/12/fact-sheet-president-signs-executive-order-charting-new-course-to-improve-the-nations-cybersecurity-and-protect-federal-government-networks/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/05/12/fact-sheet-president-signs-executive-order-charting-new-course-to-improve-the-nations-cybersecurity-and-protect-federal-government-networks/
https://en.wikipedia.org/wiki/Morris_worm
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php


 
 

Software Security 
 

 

Issue 1 © NESSI 2023 2 

The onus is on software security and software security engineering to mitigate the risks of vulnerabilities 

along the supply chain and throughout the entire software lifecycle.  

Scope 

The target domain of this paper is the lifecycle of engineered software products and services (hereafter 

collectively “software”). We focus on identifying major security challenges along this lifecycle that need to 

be met for a successful implementation of the CRA. 

The objectives of the CRA are to improve the security of software products throughout the entire product 

lifecycle, to introduce certification requirements and conformity marking for product security, to enhance 

the transparency of security properties of software products, and to enable business and consumers to use 

those products securely. Consequently, we focus on software security approaches and techniques that are 

essential for meeting these objectives of the CRA: 

• software development practices that improve the security of software and lead to fewer 

vulnerabilities;  

• quality assurance through certification and conformity assessment; 

• transparency of security properties through software composition analysis and threat intelligence 

sharing; and 

• secure usage supported by automated vulnerability detection and reporting. 

In addition, NESSI feels that the integration of software into complex systems deserves dedicated 

consideration, because growing system complexity creates specific difficulties and challenges in ensuring the 

security of those software-intensive systems. 

Figure 2 provides an overview of the scope of this paper. It shows the stages of the software development 

life cycle and the corresponding phases of a DevOps pipeline including the feedback loops. Figure 2 also maps 

the key requirements of the CRA to the corresponding phases of the lifecycle.  

 

Figure 2 Software security scope 



 
 

Software Security 
 

 

Issue 1 © NESSI 2023 3 

Software security in the context of software supply chain regulation 

Automated verification and validation of software 

Verifying and validating that software design and code meet specified security requirements are fundamental 

principles of developing secure software7. There are different approaches applied at different stages of the 

development process8. 

• Static analysis examines a program without executing it by using an abstract representation of the 

code and its runtime behavior. The abstract models can be control flow and call graphs which allow 

the application of control flow analysis or data flow analysis techniques.  

• Dynamic analysis modifies a program or its runtime environment so that the program can be 

monitored while it is executed. Techniques include dynamic taint analysis (tracking the propagation 

of untrusted data throughout the software), dynamic symbolic execution (trying to execute all 

possible program paths), or fuzzing (feeding the interfaces of a program with random, semi-

random, and malformed inputs – often used for penetration tests). 

• Formal verification uses an abstract mathematical model of a software system to prove the 

correctness of an algorithm or certain program properties, including security properties. Methods 

include model checking, theorem proving, and bounded verification. 

Challenges 
Challenges and limitations of the different approaches are manifold8. Static analysis tends to produce false 

positives (i.e. flagging vulnerabilities which are not exploitable) whereas dynamic analysis techniques run the 

risk of producing false negatives (i.e. exploitable vulnerabilities are not detected).  Thus nominally automated 

processes based on static analysis frequently require manual intervention as reported vulnerabilities must 

be verified by inspection. In dynamic analysis the instrumentation required for monitoring may lead to 

performance problems, and so-called probe effects may cause unintended changes of the behaviour of the 

software under test. Another challenge is to capture the impact of different runtime environments. How do 

the dependencies of the deployment environment affect the component? Will different cloud environments 

affect the component under test differently? 

Performance and scalability can be issues for formal verification.  Computationally intensive algorithms make 

it challenging to verify business-relevant complex software systems. Developing formal specifications and 

ensuring their correctness is a non-trivial task that requires expert know-how: “if a verified proof is based on 

the wrong assumptions, it can validate invalid code and produce useless, and even dangerous, results”9. 

Recommendations 
Recent research has achieved remarkable advances in formal verification10 and has resulted in tools such as 

Z311, a state-of-the art theorem prover from Microsoft Research, and Coq12, a theorem prover from Inria. 

Research is needed to address performance, scalability and usability issues, the automated generation of 

formally precise specifications, and how to decompose a formal specification into parts that can be analysed 

independently from each other so that performance can be improved by analysing these parts in parallel13. 

 
7 Fundamental practices for secure software development, SAFECode, March 2018 
8 Sungdeok Cha, Richard N. Taylor, Kyochul Kang, Handbook of Software Engineering, Springer, 2019 
9 Formal Software Verification measures up, Communications of the ACM, July 2021 
10 Formal Software Verification measures up, Communications of the ACM, July 2021 
11 https://microsoft.github.io/z3guide/docs/logic/intro/  
12 Welcome! | The Coq Proof Assistant (inria.fr) 
13 Sungdeok Cha, Richard N. Taylor, Kyochul Kang, Handbook of Software Engineering, Springer, 2019 

https://microsoft.github.io/z3guide/docs/logic/intro/
https://coq.inria.fr/


 
 

Software Security 
 

 

Issue 1 © NESSI 2023 4 

Use should be made of information from multiple vulnerability databases, and feedback information gained 

from the software execution. Approaches could include sandbox testing using digital twin technology for the 

simulation of the deployment and operational environment and using self-learning and self-evolving 

software test systems that are informed by recently discovered vulnerabilities. 

Software composition analysis 

As previously noted, software is now rarely built from scratch and has many third-party dependencies. 

Vulnerabilities are continually being discovered in both open source and proprietary components, and it is in 

the interest of developers and users that it is possible to quickly determine whether a particular vulnerability 

affects their software. Both the CRA2 and the US Executive Order3 recommend a Software Bill of Materials 

(SBOM)14 to provide transparency and traceability of software dependencies and provenance. There are 

several commercial offerings software developers can use to create and analyse SBOMs15. 

Challenges 
There are several competing SBOM formats, notably SPDX16, CycloneDX17, and SWID18. They cover roughly 

the same information19, which should make it feasible to translate between them. Today’s SBOM tools have 

difficulty analysing dependencies of binary code and software containers, resulting in inaccurate and 

incomplete SBOMs. The correctness and completeness of SBOMs also depends on the extent to which 

suppliers provide a comprehensive SBOM for all the commercial and open source software included in their 

components. Moreover, SBOMs need to be kept up to date with each new software release. 

Recommendations 
The different SBOM standards need to converge into a common, internationally accepted solution that allows 

uniform and effective usage of SBOMs. Further research is required to improve software composition 

analysis, with the goal of providing accurate and complete SBOMs along the entire software supply chain.20 

SBOM handling needs to be automated and embedded into DevOps pipelines. The integrity of SBOM files 

needs to be protected from malicious tampering. Additional tools are needed in order to get all the benefits 

from the information provided by a SBOM. For example, it is essential to know whether a newly reported 

vulnerability is exploitable. A SBOM does not provide this information, and additional security advice is 

needed e.g. from a Vulnerability Exploitability eXchange (VEX) document21. Research and open source 

projects could help to evolve such a tool landscape. 

Certification and conformity assessment 
For the purposes of this paper, certification is defined as conformance testing of software22, confirmation 

that it meets certain standards and the assertion of the certifying body that the tests have been correctly 

carried out and that the unit under test has passed them.  

Challenges 
Conformance verification leading to certification is often a costly process involving significant human effort 

and expert knowledge. 

 
14 https://ntia.gov/sites/default/files/publications/ntia_sbom_framing_2nd_edition_20211021_0.pdf 
15 https://snyk.io/blog/building-sbom-open-source-supply-chain-security/  
16 https://spdx.dev/ 
17 https://cyclonedx.org/ 
18 https://csrc.nist.gov/Projects/Software-Identification-SWID 
19 https://ntia.gov/sites/default/files/publications/ntia_sbom_framing_2nd_edition_20211021_0.pdf 
20 https://thenewstack.io/sboms-are-great-for-supply-chain-security-but-buyers-beware/  
21 VEX one-page summary (ntia.gov) 
22 https://www.guru99.com/conformance-testing.html 

https://ntia.gov/sites/default/files/publications/ntia_sbom_framing_2nd_edition_20211021_0.pdf
https://snyk.io/blog/building-sbom-open-source-supply-chain-security/
https://spdx.dev/
https://cyclonedx.org/
https://csrc.nist.gov/Projects/Software-Identification-SWID
https://ntia.gov/sites/default/files/publications/ntia_sbom_framing_2nd_edition_20211021_0.pdf
https://thenewstack.io/sboms-are-great-for-supply-chain-security-but-buyers-beware/
https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://www.guru99.com/conformance-testing.html


 
 

Software Security 
 

 

Issue 1 © NESSI 2023 5 

Certification can be brittle. Examples include requirements going out of date, usage contexts changing, 

software functionality evolving through patching, and AI components evolving through learning (hence 

current concerns about regulatory approval of locked and adaptive self-learning AI, e.g. in the context of AI 

as a medical device23).  

For classified systems the Common Criteria (CC) ISO/IEC 1540824 has been used for security evaluation and 

certification for some years. Some attempts have been made to create CC Protection Profiles for civil 

applications such as smart meters, but in general the complexity and scope of a CC evaluation makes it too 

costly other than for military use. Furthermore, CC suffers from brittleness, making it incompatible with 

modern software engineering paradigms that involve continuous changes. 

Recommendations 
Research into more efficient and automated certification processes and tooling for compliance tests is 

needed in order to reduce costs, especially when repeated testing is required. Certification is closely tied to 

domains, so investigation of different domains will be required, and which processes and tools can be used 

across domains identified. 

There is a clear need for agile ongoing compliance testing against potentially moving targets for certification. 

Research is needed into strategies for and consequences of adaptive certification, including the following. 

• Determination of which circumstances render an existing certification void. If new threats emerge 

that a component is not resilient to, its certification should be void.  

• Specification of practical methods to trigger any voiding of certification. This could include 

automated monitoring or periodic field testing. 

• A new evaluation and certification scheme that is suitable for civilian applications and for modern 

software engineering paradigms such as DevOps. 

Integration of software into complex systems 

The complexity of software systems is a key source of security challenges, which are typically considered in 

terms of risks. The risk level is determined by the impact of the risk combined with its likelihood. There are 

several processes and tools for cybersecurity risk management, notably the ISO27000 series of standards, 

but a common theme is that vulnerabilities in components allow threats to affect assets (the components 

themselves or other things of value such as data or people). 

Challenges 
The integration of components into systems allows a threat due to a vulnerability in one component to cause 

risks affecting other components. The system is affected by not only the vulnerabilities of the components 

but also by the complexities arising from the interconnection of the components.  It may be the case that a 

certain combination of components interconnected in a particular way or given specific stimuli triggers 

vulnerabilities previously undiscovered. 

Integrated systems typically have multiple stakeholders with their own priorities and concerns. They may be 

differently affected by security risks, so their different perspectives need to be considered. This includes 

those who are not direct actors in the system (e.g. users or operators) but may be still affected by risks in the 

system. A key example of this is a data subject whose data is processed in the system who will be affected if 

there is a data breach. 

 
23https://www.core-md.eu/artificial-intelligence-and-medical-devices-regulation-discussing-the-legal-framework-and-

the-ethical-challenges-within-the-core-md-project/ 
24 https://www.iso.org/standard/72891.html 

https://www.core-md.eu/artificial-intelligence-and-medical-devices-regulation-discussing-the-legal-framework-and-the-ethical-challenges-within-the-core-md-project/
https://www.core-md.eu/artificial-intelligence-and-medical-devices-regulation-discussing-the-legal-framework-and-the-ethical-challenges-within-the-core-md-project/


 
 

Software Security 
 

 

Issue 1 © NESSI 2023 6 

Recommendations 
Further research is needed to examine threat propagation in systems of components, each of which may be 

a system in its own right.  

There should be investigation into the composition of system-level BOMs from the SBOMs of the components 

within the system, and into how the system-level BOMs can be utilised to identify vulnerabilities in the system 

components, e.g. developing on existing methods of using SBOMs25. There will be challenges of integrating 

SBOMs into system level BOMs, of interoperation between the formats of the individual SBOMs, the 

vulnerability schemes they use, and how they are mapped.  

Research is needed regarding vulnerability assessment at system level and the creation of dependency 

analysis tools to determine the most effective patching strategy for systems of components. 

Automated vulnerability detection & maintenance 

There has been considerable research into vulnerability detection and multiple mature databases of 

vulnerabilities exist, along with communities of practice who frequently contribute to them. When a 

vulnerability is detected, automated update and patch management can remediate it quickly to shorten the 

time a system is exposed to potential attacks. However, several challenges remain. 

Challenges 
There is little consistency between the different databases and schemes that record software vulnerabilities. 

This is a potential issue during the operational phase, if it involves testing against all known vulnerabilities 

coming from different sources and databases as there may be overlaps of vulnerabilities and different 

formats to deal with. While NIST, MITRE and others have established ways to report and uniquely identify 

vulnerabilities, there are no formal, (self-)consistent models to describe them. CVSS v2 provides metrics 

covering access, complexity and impact on confidentiality, integrity and availability, but misses important 

aspects such as loss of authenticity or loss of control. CVSS v3 requires users to assign impact metrics taking 

account of consequences beyond the vulnerable asset(s), but this depends on the system context, which 

changes often and may be open to different interpretations. 

Keeping complex systems updated is becoming more demanding due to increasing scale and increasing 

interoperation between components. Patching at scale in distributed systems is especially challenging due 

to the complexity of managing the patching operation over multiple domains of control. If multiple 

vulnerabilities are detected it is a challenge to understand which are the most important. Vulnerability 

databases include a priority score, which is certainly helpful, but this does not take account of the system-

wide impact. Obsolete software is challenging because patches are not available so any vulnerabilities found 

cannot be addressed via updates. 

Recommendations 
Research is needed into how the various vulnerability databases and formats may be seamlessly integrated 

into automated vulnerability detection and prioritised patching systems.  

Research is needed into helping people understand the priorities of vulnerabilities detected at system level, 

so that they may be appropriately handled. This is related to the risks to the relevant actors, a component or 

the whole system due to threats propagated from other system components at runtime 

Investigation is needed into automated tools for vulnerability detection and automated patching for software 

at scale and over distributed networks involving multiple domains of control. These tools should begin from 

SBOMs (or system-level BOMs), consult vulnerability databases, and determine and execute a patching 

strategy for the component or system under evaluation. 

 
25 https://cloudsmith.com/blog/how-to-analyze-an-sbom/ 

https://cloudsmith.com/blog/how-to-analyze-an-sbom/


 
 

Software Security 
 

 

Issue 1 © NESSI 2023 7 

Investigation into automated tooling to detect the presence of unmaintained software26 and give warnings 

to operators is needed. Investigation of mitigation strategies for unmaintained software is also needed, for 

example suggestions of alternatives to the unmaintained software component or isolating the unmaintained 

software from the rest of the system, along with analysis of the negative impact of the mitigation strategies 

(e.g. cost of replacing unmaintained software or reduced system functionality from isolation). 

Vulnerability reporting and cyber threat intelligence sharing  

At the very beginning of software security as a discipline, McGraw27 identified the importance of "feedback 

from the field". This has become even more relevant with the advent of the DevOps paradigm, where e.g. 

web or cloud services are under continuous development, and discovered vulnerabilities can be fixed virtually 

immediately, without waiting for a prescribed patch cycle. When a successful attack is detected, details are 

fed back to developers to determine where in the code the vulnerability lies, and upon successful 

identification to search through the entire codebase to locate similar instances. This can then be further fed 

back to architectural patterns to avoid similar flaws in the future, and to custom security testing and 

penetration testing tools to better catch flaws that evade the "good practice net".  

Cyber Threat Intelligence (CTI) which details vulnerabilities that are being exploited in the wild can be used 

both for learning about potentially undetected vulnerabilities and also for prioritization of remedial efforts 

for known (but unhandled) vulnerabilities.   

Challenges 
CSIRTs/CERTs and Information Sharing and Analysis Centres (ISACs) have an established tradition of sharing 

CTI such as indicators of compromise, based on one-to-one trust relationships. Platforms such as MISP28 

provide the mechanics of CTI sharing, but equally important is the shared understanding of code of conduct 

according to the Traffic Light Protocol (TLP)29 which governs how shared information may be used and 

distributed. However, many who could share CTI choose not to do so, through either perceived risk to 

themselves, or insufficient benefit to themselves to warrant the effort involved in sharing. 

Recommendations 
The work of CSIRTs and ISACs should involve software developers, ensuring that CTI which can help to identify 

vulnerabilities makes its way back to those responsible for the code. This includes determining motivations 

and barriers to those who could share CTI but do not do so. Research is needed into multidisciplinary aspects 

such as education of the benefits of sharing CTI, tools to simplify CTI sharing, and cultural and prosocial 

behaviour in CTI sharing. This could be linked to the European strategy for data, potentially resulting in a 

Common European data space for CTI. 

Research is needed into feedback from deployment and operation to identify key factors (e.g. environments, 

parameters, dependencies, vulnerabilities etc) and how they are incorporated into component-level testing. 

Feedback from real systems can improve the design of components within them. Collection of data from 

operational systems may yield improved synthesised test stimuli. 

Editors 

Josef Urban, Nokia; 

Steve Taylor, IT Innovation Centre; and 

Martin Gilje Jaatun, SINTEF. 

 
26 https://cwe.mitre.org/data/definitions/1104.html  
27 https://www.informit.com/store/software-security-building-security-in-9780321356703  
28 https://www.misp-project.org/ 
29 https://www.first.org/tlp/ 

https://cwe.mitre.org/data/definitions/1104.html
https://www.informit.com/store/software-security-building-security-in-9780321356703
https://www.misp-project.org/
https://www.first.org/tlp/

